1.II.32D

Principles of Quantum Mechanics
Part II, 2007

A particle in one dimension has position and momentum operators x^\hat{x} and p^\hat{p} whose eigenstates obey

xx=δ(xx),pp=δ(pp),xp=(2π)1/2eixp/\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right), \quad\left\langle p \mid p^{\prime}\right\rangle=\delta\left(p-p^{\prime}\right), \quad\langle x \mid p\rangle=(2 \pi \hbar)^{-1 / 2} e^{i x p / \hbar}

Given a state ψ|\psi\rangle, define the corresponding position-space and momentum-space wavefunctions ψ(x)\psi(x) and ψ~(p)\tilde{\psi}(p) and show how each of these can be expressed in terms of the other. Derive the form taken in momentum space by the time-independent Schrödinger equation

(p^22m+V(x^))ψ=Eψ\left(\frac{\hat{p}^{2}}{2 m}+V(\hat{x})\right)|\psi\rangle=E|\psi\rangle

for a general potential VV.

Now let V(x)=(2λ/m)δ(x)V(x)=-\left(\hbar^{2} \lambda / m\right) \delta(x) with λ\lambda a positive constant. Show that the Schrödinger equation can be written

(p22mE)ψ~(p)=λ2πmdpψ~(p)\left(\frac{p^{2}}{2 m}-E\right) \tilde{\psi}(p)=\frac{\hbar \lambda}{2 \pi m} \int_{-\infty}^{\infty} d p^{\prime} \tilde{\psi}\left(p^{\prime}\right)

and verify that it has a solution ψ~(p)=N/(p2+α2)\tilde{\psi}(p)=N /\left(p^{2}+\alpha^{2}\right) for unique choices of α\alpha and EE, to be determined (you need not find the normalisation constant, NN ). Check that this momentum space wavefunction can also be obtained from the position space solution ψ(x)=λeλx\psi(x)=\sqrt{\lambda} e^{-\lambda|x|}.