3.II.32D
Let
be the position and momentum operators for a one-dimensional harmonic oscillator of mass and frequency . Write down the commutation relations obeyed by and and give an expression for the oscillator Hamiltonian in terms of them. Prove that the only energies allowed are with and give, without proof, a formula for a general normalised eigenstate in terms of .
A three-dimensional oscillator with charge is subjected to a weak electric field so that its total Hamiltonian is
where for and is a small, dimensionless parameter. Express the general eigenstate for the Hamiltonian with in terms of one-dimensional oscillator states, and give the corresponding energy eigenvalue. Use perturbation theory to compute the changes in energies of states in the lowest two levels when , working to the leading order at which non-vanishing corrections occur.