3.II.33A

Applications of Quantum Mechanics
Part II, 2007

Consider the Hamiltonian

H=B(t)SH=\mathbf{B}(t) \cdot \mathbf{S}

for a particle of spin 12\frac{1}{2} fixed in space, in a rotating magnetic field, where

S1=2(0110),S2=2(0ii0),S3=2(1001)S_{1}=\frac{\hbar}{2}\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right), \quad S_{2}=\frac{\hbar}{2}\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad S_{3}=\frac{\hbar}{2}\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)

and

B(t)=B(sinαcosωt,sinαsinωt,cosα)\mathbf{B}(t)=B(\sin \alpha \cos \omega t, \sin \alpha \sin \omega t, \cos \alpha)

with B,αB, \alpha and ω\omega constant, and B>0,ω>0B>0, \omega>0.

There is an exact solution of the time-dependent Schrödinger equation for this Hamiltonian,

χ(t)=(cos(12λt)iBωcosαλsin(12λt))eiωt/2χ++i(ωλsinαsin(12λt))eiωt/2χ\chi(t)=\left(\cos \left(\frac{1}{2} \lambda t\right)-i \frac{B-\omega \cos \alpha}{\lambda} \sin \left(\frac{1}{2} \lambda t\right)\right) e^{-i \omega t / 2} \chi_{+}+i\left(\frac{\omega}{\lambda} \sin \alpha \sin \left(\frac{1}{2} \lambda t\right)\right) e^{i \omega t / 2} \chi_{-}

where λ(ω22ωBcosα+B2)1/2\lambda \equiv\left(\omega^{2}-2 \omega B \cos \alpha+B^{2}\right)^{1 / 2} and

χ+=(cosα2eiωtsinα2),χ=(eiωtsinα2cosα2)\chi_{+}=\left(\begin{array}{c} \cos \frac{\alpha}{2} \\ e^{i \omega t} \sin \frac{\alpha}{2} \end{array}\right), \quad \chi_{-}=\left(\begin{array}{c} e^{-i \omega t} \sin \frac{\alpha}{2} \\ -\cos \frac{\alpha}{2} \end{array}\right)

Show that, for ωB\omega \ll B, this exact solution simplifies to a form consistent with the adiabatic approximation. Find the dynamic phase and the geometric phase in the adiabatic regime. What is the Berry phase for one complete cycle of B\mathbf{B} ?

The Berry phase can be calculated as an integral of the form

Γ=iψRψdR\Gamma=i \oint\left\langle\psi \mid \nabla_{\mathbf{R}} \psi\right\rangle \cdot d \mathbf{R}

Evaluate Γ\Gamma for the adiabatic evolution described above.