1.II.34E

Electrodynamics
Part II, 2007

Frame S\mathcal{S}^{\prime} is moving with uniform speed vv in the zz-direction relative to a laboratory frame S\mathcal{S}. Using Cartesian coordinates and units such that c=1c=1, the relevant Lorentz transformation is

t=γ(tvz),x=x,y=y,z=γ(zvt)t^{\prime}=\gamma(t-v z), \quad x^{\prime}=x, \quad y^{\prime}=y, \quad z^{\prime}=\gamma(z-v t)

where γ=1/1v2\gamma=1 / \sqrt{1-v^{2}}. A straight thin wire of infinite extent lies along the zz-axis and carries charge and current line densities σ\sigma and JJ per unit length, as measured in S\mathcal{S}. Stating carefully your assumptions show that the corresponding quantities in S\mathcal{S}^{\prime} are given by

σ=γ(σvJ),J=γ(Jvσ)\sigma^{\prime}=\gamma(\sigma-v J), \quad J^{\prime}=\gamma(J-v \sigma)

Using cylindrical polar coordinates, and the integral forms of the Maxwell equations E=μ0ρ\nabla \cdot \mathbf{E}=\mu_{0} \rho and ×B=μ0j\nabla \times \mathbf{B}=\mu_{0} \mathbf{j}, derive the electric and magnetic fields outside the wire in both frames.

In a standard notation the Lorentz transformation for the electric and magnetic fields is

E=E,B=B,E=γ(E+v×B),B=γ(Bv×E)\mathbf{E}_{\|}^{\prime}=\mathbf{E}_{\|}, \quad \mathbf{B}_{\|}^{\prime}=\mathbf{B}_{\|}, \quad \quad \mathbf{E}_{\perp}^{\prime}=\gamma\left(\mathbf{E}_{\perp}+\mathbf{v} \times \mathbf{B}_{\perp}\right), \quad \mathbf{B}_{\perp}^{\prime}=\gamma\left(\mathbf{B}_{\perp}-\mathbf{v} \times \mathbf{E}_{\perp}\right)

Is your result consistent with this?