2.II.35A

General Relativity
Part II, 2007

The symbol a\nabla_{a} denotes the covariant derivative defined by the Christoffel connection Γbca\Gamma_{b c}^{a} for a metric gabg_{a b}. Explain briefly why

(abba)ϕ=0(abba)vc0\begin{gathered} \left(\nabla_{a} \nabla_{b}-\nabla_{b} \nabla_{a}\right) \phi=0 \\ \left(\nabla_{a} \nabla_{b}-\nabla_{b} \nabla_{a}\right) v_{c} \neq 0 \end{gathered}

in general, where ϕ\phi is a scalar field and vcv_{c} is a covariant vector field.

A Killing vector field vav_{a} satisfies the equation

Sabavb+bva=0S_{a b} \equiv \nabla_{a} v_{b}+\nabla_{b} v_{a}=0

By considering the quantity aSbc+bSaccSab\nabla_{a} S_{b c}+\nabla_{b} S_{a c}-\nabla_{c} S_{a b}, show that

abvc=Rabcdvd\nabla_{a} \nabla_{b} v_{c}=-R_{a b c}^{d} v_{d}

Find all Killing vector fields vav_{a} in the case of flat Minkowski space-time.

For a metric of the form

ds2=f(x)dt2+gij(x)dxi dxj,i,j=1,2,3\mathrm{d} s^{2}=-f(\mathbf{x}) \mathrm{d} t^{2}+g_{i j}(\mathbf{x}) \mathrm{d} x^{i} \mathrm{~d} x^{j}, \quad i, j=1,2,3

where x\mathbf{x} denotes the coordinates xix^{i}, show that Γ000=Γij0=0\Gamma_{00}^{0}=\Gamma_{i j}^{0}=0 and that Γ0i0=Γi00=\Gamma_{0 i}^{0}=\Gamma_{i 0}^{0}= 12(if)/f\frac{1}{2}\left(\partial_{i} f\right) / f. Deduce that the vector field va=(1,0,0,0)v^{a}=(1,0,0,0) is a Killing vector field.

[You may assume the standard symmetries of the Riemann tensor.]