2.II.36B
Viscous fluid is extracted through a small hole in the tip of the cone given by in spherical polar coordinates . The total volume flux through the hole takes the constant value . It is given that there is a steady solution of the Navier-Stokes equations for the fluid velocity . For small enough , the velocity is well approximated by , where except in thin boundary layers near .
(i) Verify that the volume flux through the hole is approximately .
(ii) Construct a Reynolds number (depending on ) in terms of and the kinematic viscosity , and thus give an estimate of the value of below which solutions of this type will appear.
(iii) Assuming that there is a boundary layer near , write down the boundary layer equations in the usual form, using local Cartesian coordinates and parallel and perpendicular to the boundary. Show that the boundary layer thickness is proportional to , and show that the component of the velocity may be written in the form
Derive the equation and boundary conditions satisfied by . Give an expression, in terms of , for the volume flux through the boundary layer, and use this to derive the dependence of the first correction to the flow outside the boundary layer.