Consider two possible experiments giving rise to observed data yij where i=1,…,I,j=1,…,J.
- The data are realizations of independent Poisson random variables, i.e.,
Yij∼f1(yij;μij)=yij!μijyijexp{−μij}
where μij=μij(β), with β an unknown (possibly vector) parameter. Write β^ for the maximum likelihood estimator (m.l.e.) of β and y^ij=μij(β^) for the (i,j) th fitted value under this model.
- The data are components of a realization of a multinomial random 'vector'
Y∼f2((yij);n,(pij))=n!i=1∏Ij=1∏Jyij!pijyij
where the yij are non-negative integers with
i=1∑Ij=1∑Jyij=n and pij(β)=nμij(β)
Write β∗ for the m.l.e. of β and yij∗=npij(β∗) for the (i,j) th fitted value under this model.
Show that, if
i=1∑Ij=1∑Jy^ij=n
then β^=β∗ and y^ij=yij∗ for all i,j. Explain the relevance of this result in the context of fitting multinomial models within a generalized linear model framework.