1.I.7E

Dynamical Systems
Part II, 2007

Given a non-autonomous kk th-order differential equation

dkydtk=g(t,y,dydt,d2ydt2,,dk1ydtk1)\frac{d^{k} y}{d t^{k}}=g\left(t, y, \frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}, \ldots, \frac{d^{k-1} y}{d t^{k-1}}\right)

with yRy \in \mathbb{R}, explain how it may be written in the autonomous first-order form x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}) for suitably chosen vectors x\mathbf{x} and f\mathbf{f}.

Given an autonomous system x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}) in Rn\mathbb{R}^{n}, define the corresponding flow ϕt(x)\boldsymbol{\phi}_{t}(\mathbf{x}). What is ϕs(ϕt(x))\phi_{s}\left(\phi_{t}(\mathbf{x})\right) equal to? Define the orbit O(x)\mathcal{O}(\mathbf{x}) through x\mathbf{x} and the limit set ω(x)\omega(\mathbf{x}) of x\mathbf{x}. Define a homoclinic orbit.