4.II.14E
Consider the one-dimensional map defined by
where and are constants, is a parameter and .
(i) Find the fixed points of and determine the linear stability of . Hence show that there are bifurcations at , at and, if , at .
Sketch the bifurcation diagram for each of the cases:
In each case show the locus and stability of the fixed points in the -plane, and state the type of each bifurcation. [Assume that there are no further bifurcations in the region sketched.]
(ii) For the case (i.e. , you may assume that
Show that there are at most three 2-cycles and determine when they exist. By considering , or otherwise, show further that one 2-cycle is always unstable when it exists and that the others are unstable when . Sketch the bifurcation diagram showing the locus and stability of the fixed points and 2 -cycles. State briefly what you would expect to occur in the region .