3.I.7E

Dynamical Systems
Part II, 2007

State the Poincaré-Bendixson Theorem for a system x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}) in R2\mathbb{R}^{2}.

Prove that if k2<4k^{2}<4 then the system

x˙=xyx3xy2k2xy2y˙=y+xx2yy3k2x2y\begin{aligned} &\dot{x}=x-y-x^{3}-x y^{2}-k^{2} x y^{2} \\ &\dot{y}=y+x-x^{2} y-y^{3}-k^{2} x^{2} y \end{aligned}

has a periodic orbit in the region 2/(2+k2)x2+y212 /\left(2+k^{2}\right) \leqslant x^{2}+y^{2} \leqslant 1.