4.I.8B

Further Complex Methods
Part II, 2007

The hypergeometric function F(a,b;c;z)F(a, b ; c ; z) is defined by

F(a,b;c;z)=K01tb1(1t)cb1(1tz)adtF(a, b ; c ; z)=K \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t

where arg(1tz)<π|\arg (1-t z)|<\pi and KK is a constant determined by the condition F(a,b;c;0)=1F(a, b ; c ; 0)=1.

(i) Express KK in terms of Gamma functions.

(ii) By considering the nnth derivative F(n)(a,b;c;0)F^{(n)}(a, b ; c ; 0), show that F(a,b;c;z)=F(b,a;c;z)F(a, b ; c ; z)=F(b, a ; c ; z).