1.II.15A

Cosmology
Part II, 2007

In a homogeneous and isotropic universe, the scale factor a(t)a(t) obeys the Friedmann equation

(a˙a)2+kc2a2=8πG3ρ,\left(\frac{\dot{a}}{a}\right)^{2}+\frac{k c^{2}}{a^{2}}=\frac{8 \pi G}{3} \rho,

where ρ\rho is the matter density, which, together with the pressure PP, satisfies

ρ˙=3a˙a(ρ+P/c2)\dot{\rho}=-3 \frac{\dot{a}}{a}\left(\rho+P / c^{2}\right)

Here, kk is a constant curvature parameter. Use these equations to show that the rate of change of the Hubble parameter H=a˙/aH=\dot{a} / a satisfies

H˙+H2=4πG3(ρ+3P/c2)\dot{H}+H^{2}=-\frac{4 \pi G}{3}\left(\rho+3 P / c^{2}\right)

Suppose that an expanding Friedmann universe is filled with radiation (density ρR\rho_{R} and pressure PR=ρRc2/3)\left.P_{R}=\rho_{R} c^{2} / 3\right) as well as a "dark energy" component (density ρΛ\rho_{\Lambda} and pressure PΛ=ρΛc2)\left.P_{\Lambda}=-\rho_{\Lambda} c^{2}\right). Given that the energy densities of these two components are measured today (t=t0)\left(t=t_{0}\right) to be

ρR0=β3H028πG and ρΛ0=3H028πG with constant β>0 and a(t0)=1,\rho_{R 0}=\beta \frac{3 H_{0}^{2}}{8 \pi G} \quad \text { and } \quad \rho_{\Lambda 0}=\frac{3 H_{0}^{2}}{8 \pi G} \quad \text { with constant } \beta>0 \quad \text { and } \quad a\left(t_{0}\right)=1,

show that the curvature parameter must satisfy kc2=βH02k c^{2}=\beta H_{0}^{2}. Hence derive the following relations for the Hubble parameter and its time derivative:

H2=H02a4(ββa2+a4)H˙=βH02a4(2a2)\begin{aligned} H^{2} &=\frac{H_{0}^{2}}{a^{4}}\left(\beta-\beta a^{2}+a^{4}\right) \\ \dot{H} &=-\beta \frac{H_{0}^{2}}{a^{4}}\left(2-a^{2}\right) \end{aligned}

Show qualitatively that universes with β>4\beta>4 will recollapse to a Big Crunch in the future. [Hint: Sketch a4H2a^{4} H^{2} and a4H˙a^{4} \dot{H} versus a2a^{2} for representative values of β\beta.]

For β=4\beta=4, find an explicit solution for the scale factor a(t)a(t) satisfying a(0)=0a(0)=0. Find the limiting behaviours of this solution for large and small tt. Comment briefly on their significance.