4.I.10A

Cosmology
Part II, 2007

The equation governing density perturbation modes δk(t)\delta_{\mathbf{k}}(t) in a matter-dominated universe (with a(t)=(t/t0)2/3a(t)=\left(t / t_{0}\right)^{2 / 3} ) is

δ¨k+2a˙aδ˙k32(a˙a)2δk=0\ddot{\delta}_{\mathbf{k}}+2 \frac{\dot{a}}{a} \dot{\delta}_{\mathbf{k}}-\frac{3}{2}\left(\frac{\dot{a}}{a}\right)^{2} \delta_{\mathbf{k}}=0

where k\mathbf{k} is the comoving wavevector. Find the general solution for the perturbation, showing that there is a growing mode such that

δk(t)a(t)a(ti)δk(ti)(tti)\delta_{\mathbf{k}}(t) \approx \frac{a(t)}{a\left(t_{i}\right)} \delta_{\mathbf{k}}\left(t_{i}\right) \quad\left(t \gg t_{i}\right)

Show that the physical wavelength corresponding to the comoving wavenumber k=kk=|\mathbf{k}| crosses the Hubble radius cH1c H^{-1} at a time tkt_{k} given by

tkt0=(k0k)3, where k0=2πcH01\frac{t_{k}}{t_{0}}=\left(\frac{k_{0}}{k}\right)^{3} \quad, \quad \text { where } \quad k_{0}=\frac{2 \pi}{c H_{0}^{-1}}

According to inflationary theory, the amplitude of the variance at horizon-crossing is constant, that is, δk(tk)2=AV1/k3\left\langle\left|\delta_{\mathbf{k}}\left(t_{k}\right)\right|^{2}\right\rangle=A V^{-1} / k^{3} where AA and VV (the volume) are constants. Given this amplitude and the results obtained above, deduce that the power spectrum today takes the form

P(k)Vδk(t0)2=Ak04kP(k) \equiv V\left\langle\left|\delta_{\mathbf{k}}\left(t_{0}\right)\right|^{2}\right\rangle=\frac{A}{k_{0}^{4}} k