4.II.17H

Graph Theory
Part II, 2007

Let GG be a graph with nn vertices and mm edges. Show that if GG contains no C4C_{4}, then mn4(1+4n3)m \leqslant \frac{n}{4}(1+\sqrt{4 n-3}).

Let C4(G)C_{4}(G) denote the number of subgraphs of GG isomorphic to C4C_{4}. Show that if mn(n1)4m \geqslant \frac{n(n-1)}{4}, then GG contains at least n(n1)(n3)8\frac{n(n-1)(n-3)}{8} paths of length 2 . By considering the numbers r1,r2,,r(n2)r_{1}, r_{2}, \ldots, r_{\left(\begin{array}{c}n \\ 2\end{array}\right)} of vertices joined to each pair of vertices of GG, deduce that

C4(G)12(n2)((n3)/42)C_{4}(G) \geqslant \frac{1}{2}\left(\begin{array}{l} n \\ 2 \end{array}\right)\left(\begin{array}{c} (n-3) / 4 \\ 2 \end{array}\right)

Now let G=G(n,1/2)G=G(n, 1 / 2) be the random graph on {1,2,,n}\{1,2, \ldots, n\} in which each pair of vertices is joined independently with probability 1/21 / 2. Find the expectation E(C4(G))\mathbb{E}\left(C_{4}(G)\right) of C4(G)C_{4}(G). Deduce that if 0<ϵ<1/20<\epsilon<1 / 2, then

Pr(C4(G)(1+2ϵ)316(n4))ϵ\operatorname{Pr}\left(C_{4}(G) \leqslant(1+2 \epsilon) \frac{3}{16}\left(\begin{array}{l} n \\ 4 \end{array}\right)\right) \geqslant \epsilon