2.II.12F

Topics in Analysis
Part II, 2007

(i) Suppose that f:[0,1]Rf:[0,1] \rightarrow \mathbb{R} is continuous. Prove the theorem of Bernstein which states that, if we write

fm(t)=r=0m(mr)f(r/m)tr(1t)mrf_{m}(t)=\sum_{r=0}^{m}\left(\begin{array}{c} m \\ r \end{array}\right) f(r / m) t^{r}(1-t)^{m-r}

for 0t10 \leqslant t \leqslant 1, then fmff_{m} \rightarrow f uniformly as mm \rightarrow \infty

(ii) Let n1,a1,n,a2,n,,an,nRn \geqslant 1, a_{1, n}, a_{2, n}, \ldots, a_{n, n} \in \mathbb{R} and let x1,n,x2,n,,xn,nx_{1, n}, x_{2, n}, \ldots, x_{n, n} be distinct points in [0,1][0,1]. We write

In(g)=j=1naj,ng(xj,n)I_{n}(g)=\sum_{j=1}^{n} a_{j, n} g\left(x_{j, n}\right)

for every continuous function g:[0,1]Rg:[0,1] \rightarrow \mathbb{R}. Show that, if

In(P)=01P(t)dtI_{n}(P)=\int_{0}^{1} P(t) d t

for all polynomials PP of degree 2n12 n-1 or less, then aj,n0a_{j, n} \geqslant 0 for all 1jn1 \leqslant j \leqslant n and j=1naj,n=1.\sum_{j=1}^{n} a_{j, n}=1 .

(iii) If InI_{n} satisfies the conditions set out in (ii), show that

In(f)01f(t)dtI_{n}(f) \rightarrow \int_{0}^{1} f(t) d t

as nn \rightarrow \infty whenever f:[0,1]Rf:[0,1] \rightarrow \mathbb{R} is continuous.