4.II.18F

Galois Theory
Part II, 2007

Let f(x)K[x]f(x) \in K[x] be a monic polynomial, LL a splitting field for f,α1,,αnf, \alpha_{1}, \ldots, \alpha_{n} the roots of ff in LL. Let (f)=i<j(αiαj)2\triangle(f)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2} be the discriminant of ff. Explain why (f)\triangle(f) is a polynomial function in the coefficients of ff, and determine (f)\triangle(f) when f(x)=x3+px+qf(x)=x^{3}+p x+q.

Compute the Galois group of the polynomial x33x+1Q[x]x^{3}-3 x+1 \in \mathbb{Q}[x].