2.II.20H

Number Fields
Part II, 2007

Let K=Q(10)K=\mathbb{Q}(\sqrt{10}) and put ε=3+10\varepsilon=3+\sqrt{10}.

(a) Show that 2,3 and ε+1\varepsilon+1 are irreducible elements in OK\mathcal{O}_{K}. Deduce from the equation

6=23=(ε+1)(εˉ+1)6=2 \cdot 3=(\varepsilon+1)(\bar{\varepsilon}+1)

that OK\mathcal{O}_{K} is not a principal ideal domain.

(b) Put p2=[2,ε+1]\mathfrak{p}_{2}=[2, \varepsilon+1] and p3=[3,ε+1]\mathfrak{p}_{3}=[3, \varepsilon+1]. Show that

[2]=p22,[3]=p3p3,p2p3=[ε+1],p2p3=[ε1].[2]=\mathfrak{p}_{2}^{2}, \quad[3]=\mathfrak{p}_{3} \overline{\mathfrak{p}}_{3}, \quad \mathfrak{p}_{2} \mathfrak{p}_{3}=[\varepsilon+1], \quad \mathfrak{p}_{2} \overline{\mathfrak{p}}_{3}=[\varepsilon-1] .

Deduce that KK has class number 2 .

(c) Show that ε\varepsilon is the fundamental unit of KK. Hence prove that all solutions in integers x,yx, y of the equation x210y2=6x^{2}-10 y^{2}=6 are given by

x+10y=±εn(ε+(1)n),n=0,1,2,x+\sqrt{10} y=\pm \varepsilon^{n}\left(\varepsilon+(-1)^{n}\right), \quad n=0,1,2, \ldots