4.II.20H

Number Fields
Part II, 2007

Let KK be a finite extension of Q\mathbb{Q} and let O=OK\mathcal{O}=\mathcal{O}_{K} be its ring of integers. We will assume that O=Z[θ]\mathcal{O}=\mathbb{Z}[\theta] for some θO\theta \in \mathcal{O}. The minimal polynomial of θ\theta will be denoted by gg. For a prime number pp let

gˉ(X)=gˉ1(X)e1gˉr(X)er\bar{g}(X)=\bar{g}_{1}(X)^{e_{1}} \cdot \ldots \cdot \bar{g}_{r}(X)^{e_{r}}

be the decomposition of gˉ(X)=g(X)+pZ[X](Z/pZ)[X]\bar{g}(X)=g(X)+p \mathbb{Z}[X] \in(\mathbb{Z} / p \mathbb{Z})[X] into distinct irreducible monic factors gˉi(X)(Z/pZ)[X]\bar{g}_{i}(X) \in(\mathbb{Z} / p \mathbb{Z})[X]. Let gi(X)Z[X]g_{i}(X) \in \mathbb{Z}[X] be a polynomial whose reduction modulo pp is gˉi(X)\bar{g}_{i}(X). Show that

pi=[p,gi(θ)],i=1,,r,\mathfrak{p}_{i}=\left[p, g_{i}(\theta)\right], \quad i=1, \ldots, r,

are the prime ideals of O\mathcal{O} containing pp, that these are pairwise different, and

[p]=p1e1prer[p]=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{r}^{e_{r}}