2.I.2 F2 . \mathrm{I} . 2 \mathrm{~F}2.I.2 FTopics in AnalysisPart II, 2007WriteP+={(x,y)∈R2:x,y>0}.P^{+}=\left\{(x, y) \in \mathbb{R}^{2}: x, y>0\right\} .P+={(x,y)∈R2:x,y>0}.Suppose that KKK is a convex, compact subset of R2\mathbb{R}^{2}R2 with K∩P+≠∅K \cap P^{+} \neq \emptysetK∩P+=∅. Show that there is a unique point (x0,y0)∈K∩P+\left(x_{0}, y_{0}\right) \in K \cap P^{+}(x0,y0)∈K∩P+such thatxy⩽x0y0x y \leqslant x_{0} y_{0}xy⩽x0y0for all (x,y)∈K∩P+(x, y) \in K \cap P^{+}(x,y)∈K∩P+.