2.I.2 F2 . \mathrm{I} . 2 \mathrm{~F}

Topics in Analysis
Part II, 2007

Write

P+={(x,y)R2:x,y>0}.P^{+}=\left\{(x, y) \in \mathbb{R}^{2}: x, y>0\right\} .

Suppose that KK is a convex, compact subset of R2\mathbb{R}^{2} with KP+K \cap P^{+} \neq \emptyset. Show that there is a unique point (x0,y0)KP+\left(x_{0}, y_{0}\right) \in K \cap P^{+}such that

xyx0y0x y \leqslant x_{0} y_{0}

for all (x,y)KP+(x, y) \in K \cap P^{+}.