2.II.23F

Riemann Surfaces
Part II, 2007

A function ψ\psi is defined for zCz \in \mathbb{C} by

ψ(z)=n=exp(πi(n+12)2τ+2πi(n+12)(z+12))\psi(z)=\sum_{n=-\infty}^{\infty} \exp \left(\pi i\left(n+\frac{1}{2}\right)^{2} \tau+2 \pi i\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right)

where τ\tau is a complex parameter with Im(τ)>0\operatorname{Im}(\tau)>0. Prove that this series converges uniformly on the subsets {Im(z)R}\{|\operatorname{Im}(z)| \leqslant R\} for R>0R>0 and deduce that ψ\psi is holomorphic on C\mathbb{C}.

You may assume without proof that

ψ(z+1)=ψ(z) and ψ(z+τ)=exp(πiτ2πiz)ψ(z)\psi(z+1)=-\psi(z) \quad \text { and } \quad \psi(z+\tau)=-\exp (-\pi i \tau-2 \pi i z) \psi(z)

for all zCz \in \mathbb{C}. Let (z)\ell(z) be the logarithmic derivative (z)=ψ(z)ψ(z)\ell(z)=\frac{\psi^{\prime}(z)}{\psi(z)}. Show that

(z+1)=(z) and (z+τ)=2πi+(z)\ell(z+1)=\ell(z) \quad \text { and } \quad \ell(z+\tau)=-2 \pi i+\ell(z)

for all zCz \in \mathbb{C}. Deduce that ψ\psi has only one zero in the parallelogram PP with vertices 12(±1±τ)\frac{1}{2}(\pm 1 \pm \tau). Find all of the zeros of ψ.\psi .

Let Λ\Lambda be the lattice in C\mathbb{C} generated by 1 and τ\tau. Show that, for λj,ajC\lambda_{j}, a_{j} \in \mathbb{C} (j=1,,n)(j=1, \ldots, n), the formula

f(z)=λ1ψ(za1)ψ(za1)++λnψ(zan)ψ(zan)f(z)=\lambda_{1} \frac{\psi^{\prime}\left(z-a_{1}\right)}{\psi\left(z-a_{1}\right)}+\ldots+\lambda_{n} \frac{\psi^{\prime}\left(z-a_{n}\right)}{\psi\left(z-a_{n}\right)}

gives a Λ\Lambda-periodic meromorphic function ff if and only if λ1++λn=0\lambda_{1}+\ldots+\lambda_{n}=0. Deduce that ddz(ψ(za)ψ(za))\frac{d}{d z}\left(\frac{\psi^{\prime}(z-a)}{\psi(z-a)}\right) is Λ\Lambda-periodic.