1.II.25J

Probability and Measure
Part II, 2007

Let EE be a set and EP(E)\mathcal{E} \subseteq \mathcal{P}(E) be a set system.

(a) Explain what is meant by a π\pi-system, a dd-system and a σ\sigma-algebra.

(b) Show that E\mathcal{E} is a σ\sigma-algebra if and only if E\mathcal{E} is a π\pi-system and a dd-system.

(c) Which of the following set systems E1,E2,E3\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3} are π\pi-systems, dd-systems or σ\sigma-algebras? Justify your answers. ( #(A)\#(A) denotes the number of elements in AA.)

E1={1,2,,10}E_{1}=\{1,2, \ldots, 10\} and E1={AE1:#(A)\mathcal{E}_{1}=\left\{A \subseteq E_{1}: \#(A)\right. is even }\},

E2=N={1,2,}E_{2}=\mathbb{N}=\{1,2, \ldots\} and E2={AE2:#(A)\mathcal{E}_{2}=\left\{A \subseteq E_{2}: \#(A)\right. is even or #(A)=}\left.\#(A)=\infty\right\},

E3=RE_{3}=\mathbb{R} and E3={(a,b):a,bR,a<b}{}.\mathcal{E}_{3}=\{(a, b): a, b \in \mathbb{R}, a<b\} \cup\{\emptyset\} .

(d) State and prove the theorem on the uniqueness of extension of a measure.

[You may use standard results from the lectures without proof, provided they are clearly stated.]