3.II.24J

Probability and Measure
Part II, 2007

Let (E,E,μ)(E, \mathcal{E}, \mu) be a finite measure space, i.e. μ(E)<\mu(E)<\infty, and let 1p1 \leqslant p \leqslant \infty.

(a) Define the LpL^{p}-norm fp\|f\|_{p} of a measurable function f:ERf: E \rightarrow \overline{\mathbb{R}}, define the space Lp(E,E,μ)L^{p}(E, \mathcal{E}, \mu) and define convergence in Lp.L^{p} .

In the following you may use inequalities from the lectures without proof, provided they are clearly stated.

(b) Let f,f1,f2,Lp(E,E,μ)f, f_{1}, f_{2}, \ldots \in L^{p}(E, \mathcal{E}, \mu). Show that fnff_{n} \rightarrow f in LpL^{p} implies fnpfp\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}.

(c) Let f:ERf: E \rightarrow \mathbb{R} be a bounded measurable function with f>0\|f\|_{\infty}>0. Let

Mn=EfndμM_{n}=\int_{E}|f|^{n} d \mu

Show that Mn(0,)M_{n} \in(0, \infty) and Mn+1Mn1Mn2M_{n+1} M_{n-1} \geqslant M_{n}^{2}.

By using Jensen's inequality, or otherwise, show that

μ(E)1/nfnMn+1/Mnf\mu(E)^{-1 / n}\|f\|_{n} \leqslant M_{n+1} / M_{n} \leqslant\|f\|_{\infty}

Prove that limnMn+1/Mn=f.\lim _{n \rightarrow \infty} M_{n+1} / M_{n}=\|f\|_{\infty} .

[\left[\right. Observe that f1{f>fϵ}(fϵ).]\left.|f| \geqslant 1_{\left\{|f|>\|f\|_{\infty}-\epsilon\right\}}\left(\|f\|_{\infty}-\epsilon\right) .\right]