3.I.2 F3 . \mathrm{I} . 2 \mathrm{~F} \quad

Topics in Analysis
Part II, 2008

(a) State the Baire category theorem in its closed sets version.

(b) Let fn:RRf_{n}: \mathbf{R} \rightarrow \mathbf{R} be a continuous function for each n=1,2,3,n=1,2,3, \ldots and suppose that there is a function f:RRf: \mathbf{R} \rightarrow \mathbf{R} such that fn(x)f(x)f_{n}(x) \rightarrow f(x) for each xRx \in \mathbf{R}. Prove that for each ϵ>0\epsilon>0, there exists an integer N0N_{0} and a non-empty open interval IRI \subset \mathbf{R} such that fn(x)f(x)ϵ\left|f_{n}(x)-f(x)\right| \leqslant \epsilon for all nN0n \geqslant N_{0} and xIx \in I.

[Hint: consider, for N=1,2,3,N=1,2,3, \ldots, the sets

QN={xR:fn(x)fm(x)ϵ:n,mN}.]\left.Q_{N}=\left\{x \in \mathbf{R}:\left|f_{n}(x)-f_{m}(x)\right| \leqslant \epsilon: \forall n, m \geqslant N\right\} .\right]