2.II.26I
Consider a continuous-time Markov chain given by the diagram below.
We will assume that the rates and are all positive.
(a) Is the chain irreducible?
(b) Write down the standard equations for the hitting probabilities
and
Explain how to identify the probabilities and among the solutions to these equations.
[You should state the theorem you use but its proof is not required.]
(c) Set and find a matrix such that
The recursion matrix has a 'standard' eigenvalue and a 'standard' eigenvector that do not depend on the transition rates: what are they and why are they always present?
(d) Calculate the second eigenvalue of the matrix , and the corresponding eigenvector, in the form , where .
(e) Suppose the second eigenvalue is . What can you say about and ? Is the chain transient or recurrent? Justify your answer.
(f) Now assume the opposite: the second eigenvalue is . Check that in this case . Is the chain transient or recurrent under this condition?
(g) Finally, specify, by means of inequalities between the parameters and , when the chain is recurrent and when it is transient.