3.II.25I

Applied Probability
Part II, 2008

Let (Xt)\left(X_{t}\right) be an irreducible continuous-time Markov chain with countably many states. What does it mean to say the chain is (i) positive recurrent, (ii) null recurrent? Consider the chain (Xt)\left(X_{t}\right) with the arrow diagram below.

In this question we analyse the existence of equilibrium probabilities πiC\pi_{i \mathrm{C}} and πi W\pi_{i \mathrm{~W}} of the chain (Xt)\left(X_{t}\right) being in state iCi \mathrm{C} or i W,i=0,1,i \mathrm{~W}, i=0,1, \ldots, and the impact of this fact on positive and null recurrence of the chain.

(a) Write down the invariance equations πQ=0\pi Q=0 and check that they have the form

π0C=βλ+απ0 W,(π1C,π1 W)=βπ0 Wλ+α(λ(μ+β)μ(λ+α),λμ)(π(i+1)C,π(i+1)W)=(πiC,πi W)B,i=1,2,,\begin{aligned} \pi_{0 C} &=\frac{\beta}{\lambda+\alpha} \pi_{0 \mathrm{~W}}, \\ \left(\pi_{1 \mathrm{C}}, \pi_{1 \mathrm{~W}}\right) &=\frac{\beta \pi_{0 \mathrm{~W}}}{\lambda+\alpha}\left(\frac{\lambda(\mu+\beta)}{\mu(\lambda+\alpha)}, \frac{\lambda}{\mu}\right) \\ \left(\pi_{(i+1) \mathrm{C}}, \pi_{(i+1) \mathrm{W}}\right) &=\left(\pi_{i \mathrm{C}}, \pi_{i \mathrm{~W}}\right) B, \quad i=1,2, \ldots, \end{aligned}

where BB is a 2×22 \times 2 recursion matrix:

B=(λμβαμ(λ+α)αμβ(β+μ)μ(λ+α)β+μμ)B=\left(\begin{array}{cc} \frac{\lambda \mu-\beta \alpha}{\mu(\lambda+\alpha)} & -\frac{\alpha}{\mu} \\ \frac{\beta(\beta+\mu)}{\mu(\lambda+\alpha)} & \frac{\beta+\mu}{\mu} \end{array}\right)

(b) Verify that the row vector (π1C,π1 W)\left(\pi_{1 \mathrm{C}}, \pi_{1 \mathrm{~W}}\right) is an eigenvector of BB with the eigenvalue θ\theta where

θ=λ(μ+β)μ(λ+α)\theta=\frac{\lambda(\mu+\beta)}{\mu(\lambda+\alpha)}

Hence, specify the form of equilibrium probabilities πiC\pi_{i \mathrm{C}} and πi W\pi_{i \mathrm{~W}} and conclude that the chain (Xt)\left(X_{t}\right) is positive recurrent if and only if μα>λβ\mu \alpha>\lambda \beta.