2.II.28J
(a) Let be a Brownian motion and consider the process
for deterministic. For which values of is a supermartingale? For which values of is a martingale? For which values of is a martingale? Justify your answers.
(b) Assume that the riskless rates of return for Dollar investors and Euro investors are and respectively. Thus, 1 Dollar at time 0 in the bank account of a Dollar investor will grow to Dollars at time . For a Euro investor, the Dollar is a risky, tradable asset. Let be his equivalent martingale measure and assume that the EUR/USD exchange rate at time , that is, the number of Euros that one Dollar will buy at time , is given by
where is a Brownian motion under . Determine as function of and . Verify that is a martingale if .
(c) Let be as in part (b). Let now be an equivalent martingale measure for a Dollar investor and assume that the EUR/USD exchange rate at time is given by
where now is a Brownian motion under . Determine as function of and . Given , check, under , that is is not a martingale but that is a martingale.
(d) Assuming still that , rederive the final conclusion of part (c), namely the martingale property of , directly from part (b).