3.II.28I

Optimization and Control
Part II, 2008

Let QQ be a positive-definite symmetric m×mm \times m matrix. Show that a non-negative quadratic form on Rd×Rm\mathbb{R}^{d} \times \mathbb{R}^{m} of the form

c(x,a)=xTRx+xTSTa+aTSx+aTQa,xRd,aRmc(x, a)=x^{T} R x+x^{T} S^{T} a+a^{T} S x+a^{T} Q a, \quad x \in \mathbb{R}^{d}, \quad a \in \mathbb{R}^{m}

is minimized over aa, for each xx, with value xT(RSTQ1S)xx^{T}\left(R-S^{T} Q^{-1} S\right) x, by taking a=Kxa=K x, where K=Q1SK=-Q^{-1} S.

Consider for knk \leqslant n the controllable stochastic linear system in Rd\mathbb{R}^{d}

Xj+1=AXj+BUj+εj+1,j=k,k+1,,n1,X_{j+1}=A X_{j}+B U_{j}+\varepsilon_{j+1}, \quad j=k, k+1, \ldots, n-1,

starting from Xk=xX_{k}=x at time kk, where the control variables UjU_{j} take values in Rm\mathbb{R}^{m}, and where εk+1,,εn\varepsilon_{k+1}, \ldots, \varepsilon_{n} are independent, zero-mean random variables, with var(εj)=Nj\operatorname{var}\left(\varepsilon_{j}\right)=N_{j}. Here, A,BA, B and NjN_{j} are, respectively, d×d,d×md \times d, d \times m and d×dd \times d matrices. Assume that a cost c(Xj,Uj)c\left(X_{j}, U_{j}\right) is incurred at each time j=k,,n1j=k, \ldots, n-1 and that a final cost C(Xn)=XnTΠ0XnC\left(X_{n}\right)=X_{n}^{T} \Pi_{0} X_{n} is incurred at time nn. Here, Π0\Pi_{0} is a given non-negative-definite symmetric matrix. It is desired to minimize, over the set of all controls uu, the total expected cost Vu(k,x)V^{u}(k, x). Write down the optimality equation for the infimal cost function V(k,x)V(k, x).

Hence, show that V(k,x)V(k, x) has the form

V(k,x)=xTΠnkx+γkV(k, x)=x^{T} \Pi_{n-k} x+\gamma_{k}

for some non-negative-definite symmetric matrix Πnk\Pi_{n-k} and some real constant γk\gamma_{k}. Show how to compute the matrix Πnk\Pi_{n-k} and constant γk\gamma_{k} and how to determine an optimal control.