1.II.29C
(i) State the local existence theorem for the first order quasi-linear partial differential equation
which is to be solved for a real-valued function with data specified on a hypersurface . Include a definition of "non-characteristic" in your answer.
(ii) Consider the linear constant-coefficient case (that is, when all the functions are real constants and for some with real and real) and with the hypersurface taken to be the hyperplane . Explain carefully the relevance of the non-characteristic condition in obtaining a solution via the method of characteristics.
(iii) Solve the equation
with initial data prescribed on , for a real-valued function . Describe the domain on which your solution is and comment on this in relation to the theorem stated in (i).