2.II.30C

Partial Differential Equations
Part II, 2008

(i) Define the concept of "fundamental solution" of a linear constant-coefficient partial differential operator and write down the fundamental solution for the operator Δ-\Delta on R3\mathbb{R}^{3}.

(ii) State and prove the mean value property for harmonic functions on R3\mathbb{R}^{3}.

(iii) Let uC2(R3)u \in C^{2}\left(\mathbb{R}^{3}\right) be a harmonic function which satisfies u(p)0u(p) \geqslant 0 at every point pp in an open set ΩR3\Omega \subset \mathbb{R}^{3}. Show that if B(z,r)B(w,R)ΩB(z, r) \subset B(w, R) \subset \Omega, then

u(w)(rR)3u(z).u(w) \geqslant\left(\frac{r}{R}\right)^{3} u(z) .

Assume that B(x,4r)ΩB(x, 4 r) \subset \Omega. Deduce, by choosing R=3rR=3 r and w,zw, z appropriately, that

infB(x,r)u33supB(x,r)u.\inf _{B(x, r)} u \geqslant 3^{-3} \sup _{B(x, r)} u .

[In (iii), B(z,ρ)={xR3:xz<ρ}B(z, \rho)=\left\{x \in \mathbb{R}^{3}:\|x-z\|<\rho\right\} is the ball of radius ρ>0\rho>0 centred at zR3]\left.z \in \mathbb{R}^{3} \cdot\right]