3.II.29C

Partial Differential Equations
Part II, 2008

Let Cper={uC(R):u(x+2π)=u(x)}C_{p e r}^{\infty}=\left\{u \in C^{\infty}(\mathbb{R}): u(x+2 \pi)=u(x)\right\} be the space of smooth 2π2 \pi-periodic functions of one variable.

(i) For fCperf \in C_{p e r}^{\infty} show that there exists a unique ufCperu_{f} \in C_{p e r}^{\infty} such that

d2ufdx2+uf=f-\frac{d^{2} u_{f}}{d x^{2}}+u_{f}=f

(ii) Show that If[uf+ϕ]>If[uf]I_{f}\left[u_{f}+\phi\right]>I_{f}\left[u_{f}\right] for every ϕCper\phi \in C_{p e r}^{\infty} which is not identically zero, where If:CperRI_{f}: C_{p e r}^{\infty} \rightarrow \mathbb{R} is defined by

If[u]=12π+π[(ux)2+u22f(x)u]dxI_{f}[u]=\frac{1}{2} \int_{-\pi}^{+\pi}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+u^{2}-2 f(x) u\right] d x

(iii) Show that the equation

ut2ux2+u=f(x)\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}+u=f(x)

with initial data u(0,x)=u0(x)Cper u(0, x)=u_{0}(x) \in C_{\text {per }}^{\infty} has, for t>0t>0, a smooth solution u(t,x)u(t, x) such that u(t,)Cperu(t, \cdot) \in C_{p e r}^{\infty} for each fixed t>0t>0. Give a representation of this solution as a Fourier series in xx. Calculate limt+u(t,x)\lim _{t \rightarrow+\infty} u(t, x) and comment on your answer in relation to (i).

(iv) Show that If[u(t,)]If[u(s,)]I_{f}[u(t, \cdot)] \leqslant I_{f}[u(s, \cdot)] for t>s>0t>s>0, and that If[u(t,)]If[uf]I_{f}[u(t, \cdot)] \rightarrow I_{f}\left[u_{f}\right] as t+t \rightarrow+\infty.