1.II .30 A. 30 \mathrm{~A}

Asymptotic Methods
Part II, 2008

Obtain an expression for the nnth term of an asymptotic expansion, valid as λ\lambda \rightarrow \infty, for the integral

I(λ)=01t2αeλ(t2+t3)dt(α>1/2).I(\lambda)=\int_{0}^{1} t^{2 \alpha} e^{-\lambda\left(t^{2}+t^{3}\right)} d t \quad(\alpha>-1 / 2) .

Estimate the value of nn for the term of least magnitude.

Obtain the first two terms of an asymptotic expansion, valid as λ\lambda \rightarrow \infty, for the integral

J(λ)=01t2αeλ(t2t3)dt(1/2<α<0)J(\lambda)=\int_{0}^{1} t^{2 \alpha} e^{-\lambda\left(t^{2}-t^{3}\right)} d t \quad(-1 / 2<\alpha<0)

[Hint:

Γ(z)=0tz1etdt.]\left.\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t .\right]

[Stirling's formula may be quoted.]