Let U ( λ ) U(\lambda) U ( λ ) and V ( λ ) V(\lambda) V ( λ ) be matrix-valued functions of ( x , y ) (x, y) ( x , y ) depending on the auxiliary parameter λ \lambda λ . Consider a system of linear PDEs
∂ ∂ x Φ = U ( λ ) Φ , ∂ ∂ y Φ = V ( λ ) Φ \frac{\partial}{\partial x} \Phi=U(\lambda) \Phi, \quad \frac{\partial}{\partial y} \Phi=V(\lambda) \Phi ∂ x ∂ Φ = U ( λ ) Φ , ∂ y ∂ Φ = V ( λ ) Φ
where Φ \Phi Φ is a column vector whose components depend on ( x , y , λ ) (x, y, \lambda) ( x , y , λ ) . Derive the zero curvature representation as the compatibility conditions for this system.
Assume that
U ( λ ) = − ( u x 0 λ 1 − u x 0 0 1 0 ) , V ( λ ) = − ( 0 e − 2 u 0 0 0 e u λ − 1 e u 0 0 ) U(\lambda)=-\left(\begin{array}{ccc} u_{x} & 0 & \lambda \\ 1 & -u_{x} & 0 \\ 0 & 1 & 0 \end{array}\right), \quad V(\lambda)=-\left(\begin{array}{ccc} 0 & e^{-2 u} & 0 \\ 0 & 0 & e^{u} \\ \lambda^{-1} e^{u} & 0 & 0 \end{array}\right) U ( λ ) = − ⎝ ⎛ u x 1 0 0 − u x 1 λ 0 0 ⎠ ⎞ , V ( λ ) = − ⎝ ⎛ 0 0 λ − 1 e u e − 2 u 0 0 0 e u 0 ⎠ ⎞
and show that (1) is compatible if the function u = u ( x , y ) u=u(x, y) u = u ( x , y ) satisfies the PDE
∂ 2 u ∂ x ∂ y = F ( u ) \frac{\partial^{2} u}{\partial x \partial y}=F(u) ∂ x ∂ y ∂ 2 u = F ( u )
for some F ( u ) F(u) F ( u ) which should be determined.
Show that the transformation
( x , y ) ⟶ ( c x , c − 1 y ) , c ∈ R \ { 0 } (x, y) \longrightarrow\left(c x, c^{-1} y\right), \quad c \in \mathbb{R} \backslash\{0\} ( x , y ) ⟶ ( c x , c − 1 y ) , c ∈ R \ { 0 }
forms a symmetry group of the PDE (2) and find the vector field generating this group.
Find the ODE characterising the group-invariant solutions of (2).