3.II.31C

Integrable Systems
Part II, 2008

Let U(λ)U(\lambda) and V(λ)V(\lambda) be matrix-valued functions of (x,y)(x, y) depending on the auxiliary parameter λ\lambda. Consider a system of linear PDEs

xΦ=U(λ)Φ,yΦ=V(λ)Φ\frac{\partial}{\partial x} \Phi=U(\lambda) \Phi, \quad \frac{\partial}{\partial y} \Phi=V(\lambda) \Phi

where Φ\Phi is a column vector whose components depend on (x,y,λ)(x, y, \lambda). Derive the zero curvature representation as the compatibility conditions for this system.

Assume that

U(λ)=(ux0λ1ux0010),V(λ)=(0e2u000euλ1eu00)U(\lambda)=-\left(\begin{array}{ccc} u_{x} & 0 & \lambda \\ 1 & -u_{x} & 0 \\ 0 & 1 & 0 \end{array}\right), \quad V(\lambda)=-\left(\begin{array}{ccc} 0 & e^{-2 u} & 0 \\ 0 & 0 & e^{u} \\ \lambda^{-1} e^{u} & 0 & 0 \end{array}\right)

and show that (1) is compatible if the function u=u(x,y)u=u(x, y) satisfies the PDE

2uxy=F(u)\frac{\partial^{2} u}{\partial x \partial y}=F(u)

for some F(u)F(u) which should be determined.

Show that the transformation

(x,y)(cx,c1y),cR\{0}(x, y) \longrightarrow\left(c x, c^{-1} y\right), \quad c \in \mathbb{R} \backslash\{0\}

forms a symmetry group of the PDE (2) and find the vector field generating this group.

Find the ODE characterising the group-invariant solutions of (2).