2.II.32D
Derive approximate expressions for the eigenvalues of a Hamiltonian , working to second order in the parameter and assuming the eigenstates and eigenvalues of are known and non-degenerate.
Let be angular momentum operators with joint eigenstates of and . What are the possible values of the labels and and what are the corresponding eigenvalues of the operators?
A particle with spin is trapped in space (its position and momentum can be ignored) but is subject to a magnetic field of the form , resulting in a Hamiltonian . Starting from the eigenstates and eigenvalues of this Hamiltonian when , use perturbation theory to compute the leading order corrections to the energies when is non-zero but much smaller than . Compare with the exact result.
[You may set and use ]