3.II 32D32 \mathrm{D}

Principles of Quantum Mechanics
Part II, 2008

Explain, in a few lines, how the Pauli matrices σ=(σ1,σ2,σ3)\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) with

σ1=(0110),σ2=(0ii0),σ3=(1001)\sigma_{1}=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)

are used to represent angular momentum operators with respect to basis states |\uparrow\rangle and |\downarrow\rangle corresponding to spin up and spin down along the 3 -axis. You should state clearly which properties of the matrices correspond to general features of angular momentum and which are specific to spin half.

Consider two spin-half particles labelled A and B, each with its spin operators and spin eigenstates. Find the matrix representation of

σ(A)σ(B)=σ1(A)σ1(B)+σ2(A)σ2(B)+σ3(A)σ3(B)\boldsymbol{\sigma}^{(\mathrm{A})} \cdot \boldsymbol{\sigma}^{(\mathrm{B})}=\sigma_{1}^{(\mathrm{A})} \sigma_{1}^{(\mathrm{B})}+\sigma_{2}^{(\mathrm{A})} \sigma_{2}^{(\mathrm{B})}+\sigma_{3}^{(\mathrm{A})} \sigma_{3}^{(\mathrm{B})}

with respect to a basis of two-particle states AB,AB,AB,AB|\uparrow\rangle_{\mathrm{A}}|\uparrow\rangle_{\mathrm{B}},|\downarrow\rangle_{\mathrm{A}}|\uparrow\rangle_{\mathrm{B}},|\uparrow\rangle_{\mathrm{A}}|\downarrow\rangle_{\mathrm{B}},|\downarrow\rangle_{\mathrm{A}}|\downarrow\rangle_{\mathrm{B}}. Show that the eigenvalues of the matrix are 1,1,1,31,1,1,-3 and find the eigenvectors.

What is the behaviour of each eigenvector under interchange of A\mathrm{A} and B\mathrm{B} ? If the particles are identical, and there are no other relevant degrees of freedom, which of the two-particle states are allowed?

By relating (σ(A)+σ(B))2\left(\boldsymbol{\sigma}^{(\mathrm{A})}+\boldsymbol{\sigma}^{(\mathrm{B})}\right)^{2} to the operator discussed above, show that your findings are consistent with standard results for addition of angular momentum.