1.II.33E

Applications of Quantum Mechanics
Part II, 2008

A beam of particles each of mass mm and energy 2k2/(2m)\hbar^{2} k^{2} /(2 m) scatters off an axisymmetric potential VV. In the first Born approximation the scattering amplitude is

f(θ)=m2π2ei(kk0)xV(x)d3xf(\theta)=-\frac{m}{2 \pi \hbar^{2}} \int e^{-i\left(\mathbf{k}-\mathbf{k}_{0}\right) \cdot \mathbf{x}^{\prime}} V\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}

where k0=(0,0,k)\mathbf{k}_{0}=(0,0, k) is the wave vector of the incident particles and k=(ksinθ,0,kcosθ)\mathbf{k}=(k \sin \theta, 0, k \cos \theta) is the wave vector of the outgoing particles at scattering angle θ\theta (and ϕ=0\phi=0 ). Let q=kk0\mathbf{q}=\mathbf{k}-\mathbf{k}_{0} and q=qq=|\mathbf{q}|. Show that when the scattering potential VV is spherically symmetric the expression ()(*) simplifies to

f(θ)=2m2q0rV(r)sin(qr)drf(\theta)=-\frac{2 m}{\hbar^{2} q} \int_{0}^{\infty} r^{\prime} V\left(r^{\prime}\right) \sin \left(q r^{\prime}\right) d r^{\prime}

and find the relation between qq and θ\theta.

Calculate this scattering amplitude for the potential V(r)=V0erV(r)=V_{0} e^{-r} where V0V_{0} is a constant, and show that at high energies the particles emerge predominantly in a narrow cone around the forward beam direction. Estimate the angular width of the cone.