2.II.34E2 . \mathrm{II} . 34 \mathrm{E} \quad

Statistical Physics
Part II, 2008

Prove that energy fluctuations in a canonical distribution are given by

(EE)2=kBT2CV\left\langle(E-\langle E\rangle)^{2}\right\rangle=k_{B} T^{2} C_{V}

where TT is the absolute temperature, CV=ETVC_{V}=\left.\frac{\partial\langle E\rangle}{\partial T}\right|_{V} is the heat capacity at constant volume, and kBk_{B} is Boltzmann's constant.

Prove the following relation in a similar manner:

(EE)3=kB2[T4CVTV+2T3CV]\left\langle(E-\langle E\rangle)^{3}\right\rangle=k_{B}^{2}\left[\left.T^{4} \frac{\partial C_{V}}{\partial T}\right|_{V}+2 T^{3} C_{V}\right]

Show that, for an ideal gas of NN monatomic molecules where E=32NkBT\langle E\rangle=\frac{3}{2} N k_{B} T, these equations can be reduced to

1E2(EE)2=23N and 1E3(EE)3=89N2\frac{1}{\langle E\rangle^{2}}\left\langle(E-\langle E\rangle)^{2}\right\rangle=\frac{2}{3 N} \quad \text { and } \quad \frac{1}{\langle E\rangle^{3}}\left\langle(E-\langle E\rangle)^{3}\right\rangle=\frac{8}{9 N^{2}}