3.II.35D3 . \mathrm{II} . 35 \mathrm{D} \quad

Electrodynamics
Part II, 2008

The retarded scalar potential φ(t,x)\varphi(t, \mathbf{x}) produced by a charge distribution ρ(t,x)\rho(t, \mathbf{x}) is given by

φ(t,x)=14πϵ0Ωd3xρ(txx,x)xx\varphi(t, \mathbf{x})=\frac{1}{4 \pi \epsilon_{0}} \int_{\Omega} d^{3} x^{\prime} \frac{\rho\left(t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}

where Ω\Omega denotes all 3 -space. Describe briefly and qualitatively the physics underlying this formula.

Write the integrand in the formula above as a 1-dimensional integral over a new time coordinate τ\tau. Next consider a special source, a point charge qq moving along a trajectory x=x0(t)\mathbf{x}=\mathbf{x}_{0}(t) so that

ρ(t,x)=qδ(3)(xx0(t)),\rho(t, \mathbf{x})=q \delta^{(3)}\left(\mathbf{x}-\mathbf{x}_{0}(t)\right),

where δ(3)(x)\delta^{(3)}(\mathbf{x}) denotes the 3 -dimensional delta function. By reversing the order of integration, or otherwise, obtain the Liénard-Wiechert potential

φ(t,x)=14πϵ0qRvR,\varphi(t, \mathbf{x})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R-\mathbf{v} \cdot \mathbf{R}},

where v\mathbf{v} and R\mathbf{R} are to be determined.

Write down the corresponding formula for the vector potential A(t,x)\mathbf{A}(t, \mathbf{x}).

Ex=Ex,Ey=γ(EyvBz),Ez=γ(Ez+vBy),Bx=Bx,By=γ(By+vEz),Bz=γ(BzvEy),\begin{aligned} & E_{x}^{\prime}=E_{x}, \quad E_{y}^{\prime}=\gamma\left(E_{y}-v B_{z}\right), \quad E_{z}^{\prime}=\gamma\left(E_{z}+v B_{y}\right), \\ & B_{x}^{\prime}=B_{x}, \quad B_{y}^{\prime}=\gamma\left(B_{y}+v E_{z}\right), \quad B_{z}^{\prime}=\gamma\left(B_{z}-v E_{y}\right), \end{aligned}