4.II .35D. 35 \mathrm{D} \quad

Electrodynamics
Part II, 2008

The Maxwell field tensor is given by

Fab=(0ExEyEzEx0BzByEyBz0BxEzByBx0)F^{a b}=\left(\begin{array}{cccc} 0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{x} \\ E_{z} & -B_{y} & B_{x} & 0 \end{array}\right)

A general 4-velocity is written as Ua=γ(1,v)U^{a}=\gamma(1, \mathbf{v}), where γ=(1v2)1/2\gamma=\left(1-|\mathbf{v}|^{2}\right)^{-1 / 2}, and c=1c=1. A general 4-current density is written as Ja=(ρ,j)J^{a}=(\rho, \mathbf{j}), where ρ\rho is the charge density and j\mathbf{j} is the 3 -current density. Show that

FabUb=γ(Ev,E+v×B)F^{a b} U_{b}=\gamma(\mathbf{E} \cdot \mathbf{v}, \mathbf{E}+\mathbf{v} \times \mathbf{B})

In the rest frame of a conducting medium, Ohm's law states that j=σE\mathbf{j}=\sigma \mathbf{E} where σ\sigma is the conductivity. Show that the relativistic generalization to a frame in which the medium moves with uniform velocity v\mathbf{v} is

Ja(JbUb)Ua=σFabUbJ^{a}-\left(J^{b} U_{b}\right) U^{a}=\sigma F^{a b} U_{b}

Show that this implies

j=ρv+σγ(E+v×B(vE)v)\mathbf{j}=\rho \mathbf{v}+\sigma \gamma(\mathbf{E}+\mathbf{v} \times \mathbf{B}-(\mathbf{v} \cdot \mathbf{E}) \mathbf{v})

Simplify this formula, given that the charge density vanishes in the rest frame of the medium