1.II.35E

General Relativity
Part II, 2008

For the metric

ds2=1r2(dt2+dr2),r0,\mathrm{d} s^{2}=\frac{1}{r^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} r^{2}\right), \quad r \geqslant 0,

obtain the geodesic equations of motion. For a massive particle show that

(dr dt)2=11k2r2\left(\frac{\mathrm{d} r}{\mathrm{~d} t}\right)^{2}=1-\frac{1}{k^{2} r^{2}}

for some constant kk. Show that the particle moves on trajectories

r2t2=1k2,kr=secτ,kt=tanτr^{2}-t^{2}=\frac{1}{k^{2}}, \quad k r=\sec \tau, \quad k t=\tan \tau

where τ\tau is the proper time, if the origins of t,τt, \tau are chosen appropriately.