1.II.36A
Derive the relation between the stress tensor and the rate-of-strain tensor in an incompressible Newtonian fluid, using the result that there is a linear dependence between the components of and those of that is the same in all frames. Write down the boundary conditions that hold at an interface between two viscous fluids.
Viscous fluid is contained in a channel between the rigid planes and . The fluid in has dynamic viscosity , while that in has dynamic viscosity . Gravity may be neglected. The fluids move through the channel in the -direction under the influence of a pressure gradient applied at the ends of the channel. It may be assumed that the velocity has no -components, and all quantities are independent of .
Find a steady solution of the Navier-Stokes equation in which the interface between the two fluids remains at , the fluid velocity is everywhere independent of , and the pressure gradient is uniform. Use it to calculate the following:
(a) the viscous tangential stress at and at ; and
(b) the ratio of the volume fluxes of the two different fluids.
Comment on the limits of each of the results in (a) and (b) as , and as