3.II.38C

Numerical Analysis
Part II, 2008

(a) A numerical method for solving the ordinary differential equation

y(t)=f(t,y),t[0,T],y(0)=y0,y^{\prime}(t)=f(t, y), \quad t \in[0, T], \quad y(0)=y_{0},

generates for every h>0h>0 a sequence {yn}\left\{y_{n}\right\}, where yny_{n} is an approximation to y(tn)y\left(t_{n}\right) and tn=nht_{n}=n h. Explain what is meant by the convergence of the method.

(b) Prove from first principles that if the function ff is sufficiently smooth and satisfies the Lipschitz condition

f(t,x)f(t,y)λxy,x,yR,t[0,T],|f(t, x)-f(t, y)| \leqslant \lambda|x-y|, \quad x, y \in \mathbb{R}, \quad t \in[0, T],

for some λ>0\lambda>0, then the trapezoidal rule

yn+1=yn+12h[f(tn,yn)+f(tn+1,yn+1)]y_{n+1}=y_{n}+\frac{1}{2} h\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right]

converges.