3.I.1HNumber TheoryPart II, 2008Prove that, for all x⩾2x \geqslant 2x⩾2, we have∑p⩽x1p>loglogx−12\sum_{p \leqslant x} \frac{1}{p}>\log \log x-\frac{1}{2}p⩽x∑p1>loglogx−21[You may assume that, for 0<u<10<u<10<u<1,−log(1−u)−u<u22(1−u).-\log (1-u)-u<\frac{u^{2}}{2(1-u)} .−log(1−u)−u<2(1−u)u2.