4.II.13J

Statistical Modelling
Part II, 2008

Consider the following generalized linear model for responses y1,,yny_{1}, \ldots, y_{n} as a function of explanatory variables x1,,xnx_{1}, \ldots, x_{n}, where xi=(xi1,,xip)x_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)^{\top} for i=1,,ni=1, \ldots, n. The responses are modelled as observed values of independent random variables Y1,,YnY_{1}, \ldots, Y_{n}, with

YiED(μi,σi2),g(μi)=xiβ,σi2=σ2ai,Y_{i} \sim \operatorname{ED}\left(\mu_{i}, \sigma_{i}^{2}\right), \quad g\left(\mu_{i}\right)=x_{i}^{\top} \beta, \quad \sigma_{i}^{2}=\sigma^{2} a_{i},

Here, gg is a given link function, β\beta and σ2\sigma^{2} are unknown parameters, and the aia_{i} are treated as known.

[Hint: recall that we write YED(μ,σ2)Y \sim E D\left(\mu, \sigma^{2}\right) to mean that YY has density function of the form

f(y;μ,σ2)=a(σ2,y)exp{1σ2[θ(μ)yK(θ(μ))]}f\left(y ; \mu, \sigma^{2}\right)=a\left(\sigma^{2}, y\right) \exp \left\{\frac{1}{\sigma^{2}}[\theta(\mu) y-K(\theta(\mu))]\right\}

for given functions a and θ.]\theta .]

[ You may use without proof the facts that, for such a random variable YY,

E(Y)=K(θ(μ)),var(Y)=σ2K(θ(μ))σ2V(μ).]\left.E(Y)=K^{\prime}(\theta(\mu)), \quad \operatorname{var}(Y)=\sigma^{2} K^{\prime \prime}(\theta(\mu)) \equiv \sigma^{2} V(\mu) .\right]

Show that the score vector and Fisher information matrix have entries:

Uj(β)=i=1n(yiμi)xijσi2V(μi)g(μi),j=1,,pU_{j}(\beta)=\sum_{i=1}^{n} \frac{\left(y_{i}-\mu_{i}\right) x_{i j}}{\sigma_{i}^{2} V\left(\mu_{i}\right) g^{\prime}\left(\mu_{i}\right)}, \quad j=1, \ldots, p

and

ijk(β)=i=1nxijxikσi2V(μi)(g(μi))2,j,k=1,,pi_{j k}(\beta)=\sum_{i=1}^{n} \frac{x_{i j} x_{i k}}{\sigma_{i}^{2} V\left(\mu_{i}\right)\left(g^{\prime}\left(\mu_{i}\right)\right)^{2}}, \quad j, k=1, \ldots, p

How do these expressions simplify when the canonical link is used?

Explain briefly how these two expressions can be used to obtain the maximum likelihood estimate β^\hat{\beta} for β\beta.