3.I.7A

Dynamical Systems
Part II, 2008

State the normal-form equations for (i) a saddle-node bifurcation, (ii) a transcritical bifurcation and (iii) a pitchfork bifurcation, for a one-dimensional map xn+1=F(xn;μ)x_{n+1}=F\left(x_{n} ; \mu\right).

Consider a period-doubling bifurcation of the form

xn+1=xn+α+βxn+γxn2+δxn3+O(xn4),x_{n+1}=-x_{n}+\alpha+\beta x_{n}+\gamma x_{n}^{2}+\delta x_{n}^{3}+O\left(x_{n}^{4}\right),

where xn=O(μ1/2),α,β=O(μ)x_{n}=O\left(\mu^{1 / 2}\right), \alpha, \beta=O(\mu), and γ,δ=O(1)\gamma, \delta=O(1) as μ0\mu \rightarrow 0. Show that

Xn+2=Xn+μ^XnAXn3+O(Xn4),X_{n+2}=X_{n}+\hat{\mu} X_{n}-A X_{n}^{3}+O\left(X_{n}^{4}\right),

where Xn=xn12αX_{n}=x_{n}-\frac{1}{2} \alpha, and the parameters μ^\hat{\mu} and AA are to be identified in terms of α,β\alpha, \beta, γ\gamma and δ\delta. Deduce the condition for the bifurcation to be supercritical.