2.I.8C

Further Complex Methods
Part II, 2008

The Beta function is defined for Rez>0\operatorname{Re} z>0 by

B(z,q)=01tq1(1t)z1dt(Req>0)\mathrm{B}(z, q)=\int_{0}^{1} t^{q-1}(1-t)^{z-1} d t \quad(\operatorname{Re} q>0)

and by analytic continuation elsewhere in the complex zz-plane.

Show that

(z+qz)B(z+1,q)=B(z,q)\left(\frac{z+q}{z}\right) \mathrm{B}(z+1, q)=\mathrm{B}(z, q)

and explain how this result can be used to obtain the analytic continuation of B(z,q)\mathrm{B}(z, q). Hence show that B(z,q)\mathrm{B}(z, q) is analytic except for simple poles and find the residues at the poles.