1.II.14C

Further Complex Methods
Part II, 2008

Show that under the change of variable z=sin2xz=\sin ^{2} x the equation

d2wdx2+n2w=0\frac{d^{2} w}{d x^{2}}+n^{2} w=0

becomes

d2wdz2+2z12z(z1)dwdzn24(z1)zw=0\frac{d^{2} w}{d z^{2}}+\frac{2 z-1}{2 z(z-1)} \frac{d w}{d z}-\frac{n^{2}}{4(z-1) z} w=0

Show that this is a Papperitz equation and that the corresponding PP-function is

P{01012n0z1212n12}P\left\{\begin{array}{rrrr} 0 & \infty & 1 & \\ 0 & \frac{1}{2} n & 0 & z \\ \frac{1}{2} & -\frac{1}{2} n & \frac{1}{2} & \end{array}\right\}

Deduce that F(12n,12n;12;sin2x)=cosnxF\left(\frac{1}{2} n,-\frac{1}{2} n ; \frac{1}{2} ; \sin ^{2} x\right)=\cos n x.