3.I.9E

Classical Dynamics
Part II, 2008

Writing x=(p1,p2,p3,,pn,q1,q2,q3,,qn)\mathbf{x}=\left(p_{1}, p_{2}, p_{3}, \ldots, p_{n}, q_{1}, q_{2}, q_{3}, \ldots, q_{n}\right), Hamilton's equations may be written in the form

x˙=JHx\dot{\mathbf{x}}=\mathbf{J} \frac{\partial H}{\partial \mathbf{x}} \text {, }

where the 2n×2n2 n \times 2 n matrix

J=(0II0)\mathbf{J}=\left(\begin{array}{rr} 0 & -I \\ I & 0 \end{array}\right)

and II and 0 denote the n×nn \times n unit and zero matrices respectively.

Explain what is meant by the statement that the transformation xy\mathbf{x} \rightarrow \mathbf{y},

(p1,p2,p3,,pn,q1,q2,q3,,qn)(P1,P2,P3,,Pn,Q1,Q2,Q3,,Qn)\left(p_{1}, p_{2}, p_{3}, \ldots, p_{n}, q_{1}, q_{2}, q_{3}, \ldots, q_{n}\right) \rightarrow\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}, Q_{1}, Q_{2}, Q_{3}, \ldots, Q_{n}\right)

is canonical, and show that the condition for this is that

J=JJJT\mathbf{J}=\mathcal{J} \mathbf{J} \mathcal{J}^{T}

where J\mathcal{J} is the Jacobian matrix with elements

Jij=yixj\mathcal{J}_{i j}=\frac{\partial y_{i}}{\partial x_{j}}

Use this condition to show that for a system with n=1n=1 the transformation given by

P=p+2q,Q=12q14pP=p+2 q, \quad Q=\frac{1}{2} q-\frac{1}{4} p

is canonical.