4.I.10E

Cosmology
Part II, 2008

The Friedmann and Raychaudhuri equations are respectively

(a˙a)2=8πG3ρkc2a2 and a¨a=4πG3(ρ+3Pc2)\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{a^{2}} \quad \text { and } \quad \frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}\left(\rho+\frac{3 P}{c^{2}}\right) \text {, }

where ρ\rho is the mass density, PP is the pressure, kk is the curvature and a˙da/dt\dot{a} \equiv d a / d t with tt the cosmic time. Using conformal time τ\tau (defined by dτ=dt/ad \tau=d t / a ) and the equation of state P=wρc2P=w \rho c^{2}, show that these can be rewritten as

kc2H2=Ω1 and 2dHdτ=(3w+1)(H2+kc2)\frac{k c^{2}}{\mathcal{H}^{2}}=\Omega-1 \quad \text { and } \quad 2 \frac{d \mathcal{H}}{d \tau}=-(3 w+1)\left(\mathcal{H}^{2}+k c^{2}\right)

where H=a1da/dτ\mathcal{H}=a^{-1} d a / d \tau and the relative density is Ωρ/ρcrit =8πGρa2/(3H2)\Omega \equiv \rho / \rho_{\text {crit }}=8 \pi G \rho a^{2} /\left(3 \mathcal{H}^{2}\right).

Use these relations to derive the following evolution equation for Ω\Omega

dΩdτ=(3w+1)HΩ(Ω1)\frac{d \Omega}{d \tau}=(3 w+1) \mathcal{H} \Omega(\Omega-1)

For both w=0w=0 and w=1w=-1, plot the qualitative evolution of Ω\Omega as a function of τ\tau in an expanding universe H>0\mathcal{H}>0 (i.e. include curves initially with Ω>1\Omega>1 and Ω<1\Omega<1 ).

Hence, or otherwise, briefly describe the flatness problem of the standard cosmology and how it can be solved by inflation.