3.II.15E3 . \mathrm{II} . 15 \mathrm{E} \quad

Cosmology
Part II, 2008

Small density perturbations δk(t)\delta_{\mathbf{k}}(t) in pressureless matter inside the cosmological horizon obey the following Fourier evolution equation

δ¨k+2a˙aδ˙k4πGρˉcδk=0\ddot{\delta}_{\mathbf{k}}+2 \frac{\dot{a}}{a} \dot{\delta}_{\mathbf{k}}-4 \pi G \bar{\rho}_{\mathrm{c}} \delta_{\mathbf{k}}=0

where ρˉc\bar{\rho}_{\mathrm{c}} is the average background density of the pressureless gravitating matter and k\mathbf{k} is the comoving wavevector.

(i) Seek power law solutions δktβ(β\delta_{\mathbf{k}} \propto t^{\beta}(\beta constant) during the matter-dominated epoch (teq<t<t0)\left(t_{\mathrm{eq}}<t<t_{0}\right) to find the approximate solution

δk(t)=A(k)(tteq)2/3+B(k)(tteq)1,tteq\delta_{\mathbf{k}}(t)=A(\mathbf{k})\left(\frac{t}{t_{\mathrm{eq}}}\right)^{2 / 3}+B(\mathbf{k})\left(\frac{t}{t_{\mathrm{eq}}}\right)^{-1}, \quad t \gg t_{\mathrm{eq}}

where A,BA, B are functions of k\mathbf{k} only and teqt_{\mathrm{eq}} is the time of equal matter-radiation.

By considering the behaviour of the scalefactor aa and the relative density ρˉc/ρˉtotal \bar{\rho}_{\mathrm{c}} / \bar{\rho}_{\text {total }}, show that early in the radiation era (tteq)\left(t \ll t_{\mathrm{eq}}\right) there is effectively no significant perturbation growth in δk\delta_{\mathbf{k}} on sub-horizon scales.

(ii) For a given wavenumber k=kk=|\mathbf{k}|, show that the time tHt_{\mathrm{H}} at which this mode crosses inside the horizon, i.e., ctH2πa(tH)/kc t_{\mathrm{H}} \approx 2 \pi a\left(t_{\mathrm{H}}\right) / k, is given by

tHt0{(k0k)3,tHteq(1+zeq)1/2(k0k)2,tHteq\frac{t_{\mathrm{H}}}{t_{0}} \approx \begin{cases}\left(\frac{k_{0}}{k}\right)^{3}, & t_{\mathrm{H}} \gg t_{\mathrm{eq}} \\ \left(1+z_{\mathrm{eq}}\right)^{-1 / 2}\left(\frac{k_{0}}{k}\right)^{2}, & t_{\mathrm{H}} \ll t_{\mathrm{eq}}\end{cases}

where k02π/(ct0)k_{0} \equiv 2 \pi /\left(c t_{0}\right), and the equal matter-radiation redshift is given by 1+zeq=1+z_{\mathrm{eq}}= (t0/teq)2/3\left(t_{0} / t_{\mathrm{eq}}\right)^{2 / 3}.

Assume that primordial perturbations from inflation are scale-invariant with a constant amplitude as they cross the Hubble radius given by δk(tH)2V1A/k3\left\langle\left|\delta_{\mathbf{k}}\left(t_{\mathrm{H}}\right)\right|^{2}\right\rangle \approx V^{-1} A / k^{3}, where AA is a constant and VV is a large volume. Use the results of (i) to project these perturbations forward to t0t_{0}, and show that the power spectrum for perturbations today will be given approximately by

P(k)Vδk(t0)2Ak04×{k,k<keqkeq(keqk)3,k>keqP(k) \equiv V\left\langle\left|\delta_{\mathbf{k}}\left(t_{0}\right)\right|^{2}\right\rangle \approx \frac{A}{k_{0}^{4}} \times \begin{cases}k, & k<k_{\mathrm{eq}} \\ k_{\mathrm{eq}}\left(\frac{k_{\mathrm{eq}}}{k}\right)^{3}, & k>k_{\mathrm{eq}}\end{cases}