2.II.11F
Part II, 2008
Let be an operator satisfying the conditions
(i) for any with ,
(ii) for any and and
(iii) for any , where denotes the set of zeros of .
Prove that there exists a function with such that for every .
2.II.11F
Let be an operator satisfying the conditions
(i) for any with ,
(ii) for any and and
(iii) for any , where denotes the set of zeros of .
Prove that there exists a function with such that for every .